
BG95M3-QPython EVB (Start-Up and Data Call)
Huanchen Chen (Erik), tekmodul GmbH

Differences from MicroPython

QuecPython is essentially MicroPython running on Quectel modules. Due to the lack of a
comprehensive standard specification in MicroPython, the built-in libraries and the usage of various
functions may vary depending on the developers and hardware platforms. Some QuecPython users
may have prior experience developing with MicroPython on modules such as ESP32, ESP8266, and
STM32. To facilitate the migration for these users, the known differences between QuecPython and
MicroPython are listed below:

 Some MicroPython standard or dedicated libraries, such as framebuf and network, are not
implemented or built-in in QuecPython.

 Some MicroPython standard libraries, such as utime, may have different implementations and
feature completeness in QuecPython compared to modules like ESP32, resulting in differences in
performance or other detailed characteristics.

 The organization of certain features in QuecPython may differ from MicroPython. For example,
ADC functionality is generally included in the machine library in MicroPython, but in QuecPython, it
is included in the misc library.

 APIs related to specific hardware interfaces such as UART, I2C, and SPI have significant differences
between MicroPython and QuecPython and cannot be used interchangeably.

 QuecPython currently does not include the upip functionality, so quick online installation of
libraries is not possible. Manual porting is required.

 Compatibility with MicroPython IDE tools such as Thonny and uPyCraft is not guaranteed.

In summary, MicroPython code that runs successfully on modules like ESP32 usually cannot be directly
copied and run in the QuecPython environment without any modifications. Therefore, it is advisable to
avoid directly applying documentation and development experience from other MicroPython
hardware modules to QuecPython development.

Differences from CPython (normale Python)

• Unlike traditional CPython development, QuecPython has a much smaller number of built-in
libraries (standard libraries). Although QuecPython does include basic libraries for tasks such as
time setting and file management, the quantity is significantly lower compared to CPython. The
names and usage methods of these standard libraries also have many differences and are not fully
compatible.

• QuecPython does not have built-in pip functionality, so quick online installation of libraries is not
possible. Manual porting is required.

• Due to the syntax differences between QuecPython and CPython, as well as the fact that most
QuecPython libraries cannot run on desktop computers, tools such as VSCode and PyCharm on the
desktop can only be used for simple code editing. The completed scripts need to be manually
downloaded to the module for execution and debugging.

• The syntax highlighting and code completion features provided by tools like VSCode and PyCharm
are based on CPython and may not be fully applicable to QuecPython. Therefore, for beginners
who have no prior experience with the Python language, it is not recommended to use overly
intelligent IDE tools while writing code, as the built-in suggestions may be misleading.

www.tekmodul.de quectel@tekmodul.de 089-904118290

mailto:quectel@tekmodul.de
http://www.tekmodul.de/

EVB Connection

 Step 1: Connect EVB

Connect the EVB Type-C port to your PC USB port with a USB Type-C cable for power supply.

 Step 2: Power on EVB

Short the two PWK_AUTO pins with a jumper cap to power on the board and it will turn on
automatically, or long press the PWK button after power-on. It is recommended that the time
interval between power-on and pressing the PWK button should be at least 30 ms.

After performing the above operations, wait for the power indicator on the main board to
light up (LED PWR lights up blue, PWM lights up green, then EVB should be recognized in
Device Manager.).

SIM Choice
For BG95 EVB, an NB-IoT SIM card should be used. For test we used 1NCE SIM (It should
recognize the Telekom network, send SMS, and support National Roaming).

Tools

QPYcom. This tool is used for debugging code, analyzing logs, uploading python scripts to module,
downloading firmware, merging firmware, and more. Can not modify Python scripts!

VSCode: To write Python scripts. The python scripts written by VSCode must later be imported into
QPYcom.

www.tekmodul.de quectel@tekmodul.de 089-904118290

mailto:quectel@tekmodul.de
http://www.tekmodul.de/

Firmware Flashing
Standard AT firmware or QuecOpen firmware is usually downloaded into a module when the module
leaves the factory. If you want to develop the module based on QuecPython, you need to manually re-
download the dedicated QuecPython firmware into it.

https://python.quectel.com/en/download

Note: QuecPython requires a special firmware! It needs to be flashed separately. After flashing this
firmware, the board CANNOT be used for the AT command environment. If development with AT
commands is desired, the corresponding firmware must be flashed again.

Example: BG95_M3 QPython Firmware Flash:

Port Connection BG95M3

REPL Port: REPL stands for Read-Eval-Print-Loop (interactive interpreter). You can debug QuecPython
programs in REPL. Kann python Befehle eingeben (z.B. 5+3)

REPL, short for Read-Eval-Print Loop, is a simple interactive programming environment. REPL typically
provides a Command-Line Interface (CLI) that receives user input, parses and executes it, and then
returns the results to the user. In terms of functionality and usage, it is similar to the Command
Prompt (CMD) in Windows or the Shell in macOS/Linux.

DM Port: Digital Media Port. For Firmware Flashing.

www.tekmodul.de quectel@tekmodul.de 089-904118290

mailto:quectel@tekmodul.de
http://www.tekmodul.de/
https://python.quectel.com/en/download

Start-Up Qpython Functions and Commands

Network Registration (in QPYcom, REPL port)
Import net

net.operatorName() gets the operator information of the current network registration.

net.getModemFun() This method is used to obtain the current functional mode of the module.

net.getState() gets the network registration information. AT+CREG=?

Establish DataCall
Import dataCall

dataCall.getInfo(profileID, ipType)

profileID – PDP ID，range 1~3。
ipType – IP typ，0：IPV4 1：IPV6 2：IPV4&IPV6
If the output is (1, 0, [0, 0, '0.0.0.0', '0.0.0.0', '0.0.0.0']), it means that the network is already
registered, but the data call is not set up.

dataCall.setPDPContext(1,0,'iot.1nce.net','','',1) -> return: 0 = successful

The PDP context with the appropriate APN must be set according to the SIM card manufacturer. (In
our case, the SIM card manufacturer is 1NCE, so you need to look for the APN settings for 1NCE).

dataCall.getPDPContext(1) -> return: 0 = successful

dataCall.activate(1) -> return: 0 = successful

dataCall.getInfo(1,0) -> return: (1, 0, [1, 0, '100.69.60.50', '8.8.8.8', '8.8.4.4'])

import checkNet

checkNet.waitNetworkReady(60) -> return: (3,1) network ready

www.tekmodul.de quectel@tekmodul.de 089-904118290

mailto:quectel@tekmodul.de
http://www.tekmodul.de/

References

https://python.quectel.com/doc/Getting_started/en/index.html

https://python.quectel.com/doc/Application_guide/en/background/iot-and-low-code.html

https://python.quectel.com/doc/API_reference/en/iotlib/dataCall.html

www.tekmodul.de quectel@tekmodul.de 089-904118290

mailto:quectel@tekmodul.de
http://www.tekmodul.de/
https://python.quectel.com/doc/API_reference/en/iotlib/dataCall.html
https://python.quectel.com/doc/Application_guide/en/background/iot-and-low-code.html
https://python.quectel.com/doc/Getting_started/en/index.html

	BG95M3-QPython EVB (Start-Up and Data Call)
	Differences from MicroPython
	Differences from CPython (normale Python)

	EVB Connection
	SIM Choice
	Tools
	Firmware Flashing
	Port Connection BG95M3
	Start-Up Qpython Functions and Commands
	Network Registration (in QPYcom, REPL port)
	Establish DataCall
	References

